Bianca Baier^{1,2}, Colm Sweeney², Molly Crotwell^{1,2}, Kenneth Davis⁴, Sha Feng⁴, Josh DiGangi⁵, Jack Higgs², Patricia Lang², Thomas Lauvaux⁴, Scott Lehman³, Ben Miller^{1,2}, John Miller², Eric Moglia^{1,2}, Tim Newberger^{1,2}, Sandip Pal⁴, Sonja Wolter^{1,2}, and *ACT-America science team*

¹ CIRES, University of Colorado, Boulder, CO, ² NOAA ESRL GMD, Boulder, CO, ³ Institute for Arctic and Alpine Research, Boulder, CO, ⁴ The Pennsylvania State University, University Park, PA, ⁵ NASA Langley Research Center, Hampton, VA

23 May 2018

ACT-America

Supplement

Regional inversion modeling

- Need to improve inversion model estimates of carbon (C) fluxes at regional scales to better predict future climate
- Our ability to accurately quantify fluxes on smaller scales is limited by model uncertainties
- Uncertainties in regional inversions:
 - -regional transport,
 - -background estimation,
 - -assigning prior flux
 - uncertainties in time/space,
 - -sparse observations

 ACT-America
 Results
 Summary and Future Work
 Supplement

 0●
 00000
 0
 0000000000

ACT-America campaign

Atmospheric Carbon and Transport - America

Schematic: act-america.larc.nasa.gov

Fair-weather (sources)

Frontal-crossing (transport)

OCO-2 underpass (retrieval evaluation)

Fair weather flask analyses

- What do species measured in NOAA/GMD flasks tell us about regional CO₂ and CH₄ sources?
- Can flask samples approximate background carbon levels?
- Focus on fair weather flights for winter 2017

Vertical greenhouse gas distributions: WT 2017

- Column GHGs and CO increase moving NE throughout ACT domain: shift in air mass origin from lower latitudes (lower C) to higher latitudes (higher C)
- Important to quantify background contribution to regional sources
- Boundary layer enhancements $(\Delta[X] = [X]_{obs} [X]_{bg})$ inform about local sources/sinks in each region

Estimating background C levels using flasks

- Incorrect background determination can result in biased C fluxes within inversion domain
- Upper-atmospheric flask CO_2 vs. modeled background shows overlap (1σ) , but some disagreement due to incorrect tracer transport

In total, approximately 50 species measured in flasks:

■ Northeast/Midwest: source signatures from fossil fuel/ONG

- Northeast/Midwest: source signatures from fossil fuel/ONG
- Midwest: large agricultural influence

- Northeast/Midwest: source signatures from fossil fuel/ONG
- Midwest: large agricultural influence
- **Southeast**: weaker correlations with anthropogenic species, suggesting biogenic influence

- Northeast/Midwest: source signatures from fossil fuel/ONG
- Midwest: large agricultural influence
- **Southeast**: weaker correlations with anthropogenic species, suggesting biogenic influence

Radiocarbon: Northeastern U.S.

We know ¹⁴CO₂ is a tracer for recently-added fossil fuel CO₂ emissions:

$$\mathsf{CO}_{2obs} = \mathsf{CO}_{2bg} + \mathsf{CO}_{2ff} + \mathsf{CO}_{2bio}$$

- Radiocarbon sampling during ACT concentrated in Northeast
- Biogenic CO₂ dominating CO_{2tot} signal, while fossil fuel CO₂ constant

Summary and future work

- For ACT WT'17, use *GMD*measurements in flasks for
 regional-scale source attribution,
 determining background levels →
 apply to CCGG network
- Regional transport:
 - -Because sources well-known, use ¹⁴CO₂ to evaluate tracer transport in inversions

Utilize knowledge gained through campaign collaborations:

-Apply understanding of transport via weather for more informed assimilation of network data in inversions (i.e. NOAA CarbonTracker)

Supplement